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Note 

Evaluation of mt(h - c)-‘m for a Large Hermitian Matrix h 

The matrix expression indicated in the title occurs in linear expansion methods for 
bound state or scattering solutions of Schrodingcr’s equation. A method of evaluation 
is described that is efficient and accurate for matrices h much larger than available 
random access memory in a computer. Expansion of the lower triangle of h or trans- 
position is avoided and all matrix processing is sequential. The proposed method uses 
trianguhar decomposition of the Hermitian matrix, but avoids complex arithmetic 
unless the original matrix is complex. In comparison with direct use of Gaussian elimina- 
tion for (h - e)-‘m the proposed method avoids an entire step of matrix processing. 

This note describes an efficient procedure for evaluating the expression 

m’(h - c)-’ m, (1) 

where Iz is an Hermitian matrix of very large dimension, m is a rectangular matrix, 
and E denotes rl where I is the unit matrix. 

An expression of this kind occurs in variational calculations in scattering 
theory [l], where h is the bound-bound Hamiltonian matrix (connecting normal- 
izable functions), m is the bound-free Hamiltonian matrix (connecting normalizable 
and non-normalizable functions), and E is the specified total energy of rarget 
system plus scattered particle. 

Equation (1) arises in general from variational solution of Schrodinger’s 
equation in a partitioned linear space [2]. If there are two partitions, subspaces A 
and B, the linear eigenvalue equation system can be symbolized by 

(HA, - E.4) x/t + HABX, = 0, 

HoaxA -k (HAB - E”) xjj = 0. 
(3 

The second equation can be solved formally for the vector xIj , 

xg = --(HBB - E&l If,,x,‘j ) (3) 

which is substituted into the first equation to give 

(HAA -j- HAA - E,,) x/j = 0, (4) 
where 

H’ AA = -HAHon - G-*Hm . 0) 
483 
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The eigenvalue condition 

E* r= EB :; E (6) 

must be satisfied by iteration of the matrix equations in the case of discrete eigen- 
values. Matrix Hin is of the form considered in Eq. (1). 

The most straightforward approach to Eq. (I) is to solve the inhomogeneous 
equations 

(h - 6) y == nz (7) 

for the matrix y considered as a collection of vectors, and then to evaluate 

m+y := m+(lz - 6)-l m. (8) 

If h is a matrix of very large dimension, this procedure leads to grave difficulties 
of data-handling. For example, if the Hermitian matrix h is given originally as 
the lower-triangular array of its independent elements, it must first be expanded 
to a full square array for application of standard methods to Eq. (7). This expan- 
sion requires nonsequential access to the original elements of h. When only a 
small fragment of h can be stored in the available random access memory of a 
computer, the entire matrix must be scanned time after time through a buffer 
system in order to produce the transpose or the expanded square matrix. 

The alternative procedure proposed here makes use of the triangular factoriza- 
tion 

h - E =. tot’, (9) 

where t is a lower triangular matrix whose diagonal elements are positive real 
numbers and 0 is a diagonal sign matrix (elements * 1 only). An auxiliary rectan- 
gular matrix b is computed such that 

tb = m or b = tr’m. (10) 

Then Eq. (I) is evaluated as 

m+(h - c)-l nz == m+(t+)-1 ot-Irn 

= b’ob. (11) 

In practical applications only a small fraction of the elements of u are negative. 
It is convenient to represent this matrix as a list of pointers to these negative 
elements, to be used in the logic of computations indicated by Eqs. (9) and (II). 

When h - E is positive definite, u reduces to a unit matrix, and Eq. (9) describes 
the well-known Cholesky factorization, advocated by Wilkinson [3] on grounds 
of numerical stability as a step in matrix inversion or solution of inhomogeneous 
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equations. In contrast, because the proof of stability fails for general I-Iermitian 
matrices, Wilkinson specifically warns against the use of triangular factorization 
except for positive definite matrices [3]. One purpose of the present note is to 
report that for matrices arising in scattering theory [I], the procedure using 
triangular factorization, Eqs. (9)-( 1 l), has been found to be numerically more 
stable than the alternative procedure, Eqs. (7) and (8), with a careful choice of 
pivots in solution of Eq. (7) by Gaussian elimination. 

Equations (9)--(ll) can be implemented entirely by sequential data processing 
using h - E as a lower triangular array. The elements ri, of t can be obtained in 
their natural sequence (ordered by rows of a lower triangular matrix). From 
Eq. Ph 

( 
i-l 

ui :-= sgn hii - E .- c 
i, 1 

(13) i--l 

where II is the linear dimension of Iz. If the entire lower triangle h is accessible at 
random, it can be replaced element by element by t without any additional working 
space except for the negative sign pointers for ci. When this is not possib!e, the 
input matrix 11 must be scanned only once sequentially, while the output matrix I 
must be scanned sequentially for each new element ii, from its origin up to the 
location of the new element. This can be organized efficiently by using a large 
buffer area for as many rows of t as can be accessed concurrently. The corre- 
sponding segment of h is read into this window area and all elements in the area 
converted concurrently from 11 to t during a single sequential scan of the segment 
of t preceding the window segment. 

The data processing required by Eq. (10) is closely analogous to that described 
for Eq. (9). The elements bi, of h are obtained in natural sequence (ordered by 
rows), 

b<, :--- (n?,, - ;gl t,,b,,)/ri, ) ci = l,..., 11’; i -- I,..., n: (i4 

where n’ is the second dimension of the rectangular matrix h. If random access 
to all of m is possible, it can be replaced element by element by b. Otherwise, 
112 can be scanned once sequentially while b is built up through a window buffer, 
requiring a sequential scan of b from its origin for each window segment. 
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In practical applications, n’ is very much smaller than n, and the matrix defined 
by Eq. (1) is to be subtracted from an existing matrix stored in random access 
memory. Then the matrix contraction given by Eq. (11) requires only a single 
sequential scan through the rectangular matrix b. 

In comparison with Gaussian elimination, as applied to Eq. (7), the procedure 
described here saves an entire step of matrix manipulation in reaching the final 
result given by Eq. (1). Since the eliminated step, back-substitution in the usual 
procedure, requires the equivalent of transposition of a triangular matrix, the 
saving in data-handling is very important, in addition to eliminating arithmetic 
operations. 

To see this, suppose that the first step in Gaussian elimination (reduction to 
triangular form) is carried out by multiplying Eq. (7) by t-l, defined by Eq. (9), 
to give 

ot+y = t-h = b. (15) 

The work involved in reaching this form is precisely that of the two stages of 
matrix computation required to obtain t from Eq. (9) and b from Eq. (10). Gaussian 
elimination would proceed to solve Eq. (15) for the rectangular matrix y by back- 
substitution, and then y would be used in the unsymmetrical contraction, Eq. (8), 
to obtain the final result, Eq. (1). Direct use of b in Eq. (11) eliminates the back- 
substitution step. 

The method described here is being used in a many-electron, many-channel 
formulation of electron-atom scattering theory [4]. It is also being incorporated 
into a procedure designed greatly to extend the practical limits of dimensionality 
of complex Hermitian eigenvalue equations in energy band calculations by the 
OPW method [5]. 

It should be noted that if h is a real symmetric matrix and if m is real, only real 
numbers occur in the matrices t and b. 

The method can be applied to the generalized form of Eqs. (2) that includes 
a metric matrix S. Then Eq. (5) is replaced by 

HiA = -(HA, - E,S,,)(H,, - J%%J~(HBA - &%A). (16) 

This generalization requires a trivial modification of Eqs. (12) and (13). 
If any leading submatrix of h - E has a zero eigenvalue, Eq. (12) fails. However, 

in practical applications using floating point arithmetic, this requires a very 
unlikely numerical coincidence. In general, for the matrix h - E or for its leading 
submatrices, the number of negative elements u is equal to the number of negative 
eigenvalues. 

EXAMPLE. In order to demonstrate the numerical stability of the present 
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method, it has been applied to a simple example with a known exact solution. 
Given linear dimension n, the matrix h is taken to be 

hij z 1 + 2(i - 1) 6ij ; i, j -7 I ,..., n. (17) 

The matrix m is taken to be a single column vector, 

m, 7 n -/ 2(i - I) -- E; i = I,..., il. (IS) 

This vector has been chosen so that the vector y, Eq. (7), has all elements equal to 
unity. Then, from Eq. (S), 

m+(h - c)-’ m :.-z m’y = Zimi = n(2n - 1 -.- E). (19) 

Eigenvalues of I?, for n ---- 5, 10, 20, and 40, were found by a Jacobi matrix 
diagonalization, and the eigenvectors were used to compute Eq. (1) directly, 
verifying the formula given above to eight significant decimals for all values of F 
considered. A parallel calculation, using the method of the present paper, gave 
identical results to eight decimals. The values of E considered scanned through 
the fourth eigenvalue of each h matrix with increments of 0.1 x 1O-6, affecting 
the eighth significant decimal digit in each case. 64 bit floating point arithmetic 
was used for these calculations. With IZ = 40, the fourth eigenvalue of h is com- 
puted by the Jacobi method to be 6.4030997, rounded to eight digits. The present 
method gives the correct value 2903.8760 for m-(h - E)-~ m when E is either 
6.4030996 or 6.4030997. The number of negative elements ui increases by one in 
this interval, indicating agreement between the present method and the Jacobi 
method with regard to the location of the eigenvalue. 

These calculations show no evidence of numerical instability of the method 
proposed here when applied to matrices with negative eigenvalues, even when 
an eigenvalue of h - E is made to be very nearly equal to zero. 

These examples deal with relatively small matrices, for which alternative methods 
are available. In applications to electron-atom scattering theory, for which the 
present method is designed, matrices of linear dimension several thousand can 
occur. Such matrices, which contain several millions of nonzero elements, cannot 
be stored in the random access memory of existing computers. For such matrices 
the data handling aspects of the present method make it possible to carry out 
calculations that would be impossible or extremely inefficient by alternative 
methods. 
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